The \ maximal " tensor product of operator
نویسنده
چکیده
In analogy with the maximal tensor product of C-algebras, we deene the \maximal" tensor product E 1 E 2 of two operator spaces E 1 and E 2 and we show that it can be identiied completely isometrically with the sum of the two Haagerup tensor We also study the extension to more than two factors.
منابع مشابه
Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملThe " Maximal " Tensor Product of Operator Spaces
In analogy with the maximal tensor product of C *-algebras, we define the " maximal " tensor product E 1 ⊗ µ E 2 of two operator spaces E 1 and E 2 and we show that it can be identified completely isometrically with the sum of the two Haagerup tensor
متن کاملHoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
متن کاملThe sum of two maximal monotone operator is of type FPV
In this paper, we studied maximal monotonicity of type FPV for sum of two maximal monotone operators of type FPV and the obtained results improve and complete the corresponding results of this filed.
متن کاملStructures on the Way from Classical to Quantum Spaces and Their Tensor Products
We study tensor products of two structures situated, in a sense, between normed spaces and (abstract) operator spaces. We call them Lambert and proto-Lambert spaces and pay more attention to the latter ones. The considered two tensor products lead to essentially different norms in the respective spaces. Moreover, the proto-Lambert tensor product is especially nice for spaces with the maximal pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007